
Release 1.0    Copyright ã1991 by Ed Hill.    All Rights Reserved.

DynamicApplication 
INHERITS FROM Application : Responder : Object
DECLARED IN DynamicApplication.h

CLASS DESCRIPTION
The DynamicApplication class provides added functionallity to applications that would like to 
dynamically load Classes (eg. Palettes and Interface Builder).    Applications that inherit from 
DynamicApplication will be able to dynamically load Classes and use those Classes in their 
running program.

The ability to dynamically load Classes has many advantages.    The programmer can write 
his/her application wide open, so that the program is not limited to solely his/her thinking.    For 
instance Interface Builder supplies the user with a wide viriety of objects to deal with, but it 
also allows the user to create his/her objects and link them into the running version of Interface
Builder (Palettes).    The creator of a graphics package could leave his/her program open to new
file types that haven't even been thought of yet.    He/She could supply objects that know how 



to interpret tiff, pict, eps, etc.., but as the graphic formats change, the programmer would only 
need to write objects that know how to interpret an new file type, and then the user could just 
load one of these classes into the existing version of the program.    The original programmer 
would not have to constantly keep up with every graphic type in the world.    He can right a 
robust program, and leave tweeking to the users.    To speculate on exactally what could be 
achived with this Class is beyond the scope of this programmer 8-).

To use this object is fairly straightforward, but there are a few things that have to be done in 
order to load Classes.    First, the classes that you are going to load have to be compiled.    This 
version of DynamicApplication only loads one Class at a time so object (".o") files should only 
contain one class.      I have found that the following produces object files that are compatible 
with DynamicApplication.

cc -g -c -Wall [SomeClassName].m -o [SomeClassName].o

Second, instances of the classes that are going to be loaded should implement the -name 
method.    This method is used to name the Classes.    If the object does not implement the -
name method, then DynamicApplication tries to name it itself, and it can come up with rather 
bizarre names.

The last and most important thing to remember when loading Classes is that you are dealing 
with Classes, not Objects.    So in order to create instances you most send +new or +alloc 
messages to the Class that you just loaded.



INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from Application char *appName;

NXEvent currentEvent;
id windowList;
id keyWindow;
id mainWindow;
id delegate;
int *hiddenList;
int hiddenCount;
const char *hostName;
DPSContext context;
int contextNum;
id appListener;
id appSpeaker;
port_t replyPort;
NXSize screenSize;
short running;
struct __appFlags appFlags;

Declared in DynamicApplication id dynamicClasses;
int dynamicClassesNum;
struct _errorFlags {
        BOOL _errorOnLastLoad;



        BOOL _classLoaded;
        unsinged int _errorType;
} errorFlags;
struct _lastClassInfo {
        char *_className;
} lastClassInfo;

dynamicClasses A HashTable containing the names of classes as keys and the 
pointers to associated Class structures as values.    This 
HashTable is initially empty and is filled as new Classes are 
loaded into the running application.

dynamicClassesNum The number of Classes that have been loaded into the running 
application.

errorFlags._errorOnLastLoad Set to YES, if there were problems loading the last Class.

errorFlags._classLoaded Set to YES, if a Class was succesfully loaded by the most recent
call to 
-loadClass: or -loadClass: withName:.

errorFlags._errorType The type of the most recent error.

lastClassInfo._className The name of the Class that has most recently been loaded.

METHOD TYPES



Initializing the class + initialize
Creating and freeing instances + new

- free
Loaded new Classes - loadClass: 

- loadClass:withName: 
Accessing new Classes - classWithName: 

- getClassNameList:
- classesNum

Handling Errors - errorOnLastLoad:
- errorType:
- classLoaded:

Removing Class references - removeClassWithName:

CLASS METHODS

initialize
+ initialize
Registers defaults used by the DynamicApplication class.    You never send this message 
directly; it's sent for you when your application starts.    Returns self.

new
+ new



Creates a new DynamicApplication object and assigns it to the global variable NXApp.    A 
program can have only one DynamicApplication    or Appliation object, so this method just 
returns NXApp if the an Application object already exists.    This method also makes a 
connection to the Window Server, loads the PostScript procedures the DynamicApplication 
needs, and completes other initialization.    Your program should generally invoke this method 
as one of the first statements in main(); this is done for you if you create your application 
correctly with Interface Builder.    If you are using Interface Builder to create your Application, 
you will need to take the following steps to ensure that DynamicApplication is being used 
correctly: 1) Include the DynamicApplication.[hm] files in your project. 2) Subclass Application, 
and name that subclass "DynamicApplication" 3) Change the File's Owner from Application to 
DynamicApplication (in Attributes). The DynamicApplication object is returned.    

INSTANCE METHODS

classesNum
- (int)classesNum

Returns the number of classes that the Application has dynamically loaded since startup.
See also:    - getClassNameList:

classLoaded
- (BOOL)classLoaded

Returns YES, if the last call to -loadClass: or -loadClass:withName: succesfully loaded a 
Class description, otherwise returns NO.



See also:    - loadClass, - loadClass:withName:

classWithName:
- classWithName:(char *)className

Returns the Class structure identified by the name className.    For this to return the expected 
value, the Class associated with className would have to be a dynamically loaded Class that 
has already been loaded with either the -loadClass: or -loadClass:withName: methods.    
This method will not return structure of Classes that have not been dynamically loaded into the
running application.    For instance your application might know of the "Box" class when it was 
compiled, but this method will not return a pointer to the Box Class, unless you dynamically 
load a different Class structure that you call "Box".
See also:    - loadClass, - loadClass:withName:

errorOnLastLoad
- (BOOL)errorOnLastLoad

Returns YES, if    the last call to -loadClass: or -loadClass:withName: produced an error 
message, otherwise returns NO.
See also: - loadClass, - loadClass:withName:

errorType
- (unsigned int)errorType

Returns an integer representing what type of error occured during the last call to -loadClass: 



or -loadClass:withName:.    For a list of all known errors, see the end of this document.

See also: - errorOnLastLoad

free
- init
Closes all the DynamicApplication object's windows, breaks the connection to the Window 
Server, and frees the DynamicApplication object.

getClassNameList:
- getClassNameList:(char **)classList

This methods places an array of strings in the memory pointed to by classList.    It is assumed 
that sufficent memory has been allocate to classList before being passed into this method.    
The array of strings placed into classList represent the names of all the Classes that have been 
loaded into the current application.

See also: - classesNum

init
- init
Clears the instance variables of the DynamicApplication object.    Sets the number of    
dynamically loaded Classes to 0, and creates a new HashTable to hold the classes and their 
names. 

lastClass



- lastClass

Return the Class description of the last Class that was successfully loaded by a call to -
loadClass: or -loadClass:withName:.

See also: - lastClassName

lastClassName
- (char *)lastClassName

Return the name of the last Class that was successfully loaded by a call to -loadClass: or -
loadClass:withName:.

See also: - lastClass

loadClass:
- loadClass:(char *)classPath

Loads a class description from the object file classPath.    The string classPath has to be the 
filename of a ".o" file that contains the object code describing a Class structure.    If a Class 
instance responds to -name then the Class is placed into the Class HashTable based on the 
name of its instance.      
See also:    - loadClass:withName:

loadClass:withName:
- loadClass:(char *)classPath withName:(char *)className



To be used if you don't know the name of the Class that you are going to load.    If the Class 
responds to -name then the application will first assign it's true name to the loaded Class.    It 
will then make a second reference to the loaded Class.    So if you use this method to load a 
new Class, then you will be able to access the class by two names, both the Classes "true" 
name, and className.
See also:    - loadClass:

removeClassWithName:
- removeClassWithName:(char *)className

Remove the Class with the name className from the application.    In this version of the class, 
className is just removed from the HashTable, it is not actually removed from the application.  
So any object that have been created by Classes that you want to remove, will still function 
correctly after the Class has been removed.


